C’est une nouvelle étape dans la recherche spatiale sur les planètes extrasolaires. Après le satellite pionnier français Corot (2006), et les américains Kepler (2009) et Tess (2018) – tous chargés de la détection de nouveaux mondes –, le satellite Cheops qu'a lancé Arianespace ce 18 décembre 2019 est le tout premier télescope spatial dédié à l’étude d’exoplanètes déjà découvertes.
Dévoiler la nature des exoplanètes
Développé et assemblé à l’université de Berne, en collaboration avec l’université de Genève – récemment auréolée de deux prix Nobel pour la découverte de la première exoplanète –, le satellite suisse réalisé en partenariat avec l’Agence spatiale européenne (ESA) sera chargé de mesurer la taille exacte de nombreuses exoplanètes allant des dimensions de la Terre à Neptune. Il sera ainsi possible, connaissant leur masse, d’estimer avec précision leur densité et donc de découvrir s’il s’agit de planètes rocheuses, gazeuses, ou pourquoi pas gorgées d’eau.
Comme le montre le diagramme ci-dessous, les planètes de 1 à 20 masses terrestres peuvent en effet présenter des physionomies très différentes en fonction de leur taille. Réduire les incertitudes sur la mesure de leur masse et de leur taille est donc un enjeu très important pour les caractériser. Il n’est pas encore clair, par exemple, que les « super-Terre » qui grouillent parmi les 4143 exoplanètes découvertes à ce jour soient toutes rocheuses. Beaucoup pourraient être en fait des « mini-Neptune », enveloppées d’une épaisse couche de gaz.
Petit télescope mais grande précision
Pour atteindre son objectif, Cheops scrutera pendant cinq ans les faibles variations d’éclat d’étoiles relativement brillantes (magnitude inférieure à 12) hébergeant des planètes dont la période est inférieure à 50 jours. Malgré la taille modeste de son télescope de 32 cm, il sera capable de déceler les baisses de luminosité infimes, jusqu’à peut-être seulement 0,0015 %, provoquées par le passage des planètes devant le disque de leur étoile.
Cela lui permettra d’atteindre la précision record de 2 % sur la taille des exoplanètes comparables à Neptune et 5 % sur celles comparables à la Terre, et donc d’identifier celles qui possèdent une atmosphère. Ce seront les cibles les plus intéressantes pour les grands instruments à venir comme le télescope spatial JWST ou les Extremely Large Telescopes (ELT).
Chasseur d’anneaux ?
Comparé à ses prédécesseurs, Cheops a un grand avantage : comme il cible des exoplanètes déjà connues, il sait quand et où observer pour les voir passer devant leur étoile. Grâce à sa cadence rapide d’observation (meilleure qu’une minute), il pourra donc mesurer précisément la forme et la chronologie précise des transits planétaires.
La forme du transit ouvre la possibilité de détecter des exolunes ou des anneaux. En effet, la baisse d’éclat apparent d’une étoile ne se déroule pas de la même façon selon qu’une sphère nue ou une sphère entourée d’anneaux passe devant elle. Quant à sa chronologie (retard ou avance du début ou de la fin de l’événement), elle permet de découvrir l’existence d’autres planètes dans le système : même si elles ne passent pas devant le disque de l’étoile, la perturbation gravitationnelle qu’elles impriment sur leur compagne en transit influence sa trajectoire.
Revivez le lancement
Le lancement de Cheops par une fusée Soyouz-Frégate s'est déroulé comme prévu.
Environ trois heures après le décollage du lanceur, Cheops a émis le signal attendu attestant de sa bonne mise en orbite (voir ci-dessous). Quatre autres satellites, dont deux cubesats, étaient emportés dans la coiffe de la fusée.
Pour en savoir plus sur les exoplanètes, lisez le dossier (20 p.) de notre numéro 543 ou notre hors-série n°28, "Terres habitables".